1,306 research outputs found

    Towards quantum computational logics

    Get PDF
    Quantum computational logics have recently stirred increasing attention (Cattaneoetal.inMath.Slovaca54:87–108,2004;Leddaetal.inStud.Log.82(2):245–270,2006; Giuntini et al. in Stud. Log. 87(1):99–128, 2007). In this paper we outline their motivations and report on the state of the art of the approach to the logic of quantum computation that has been recently taken up and developed by our research group

    Entanglement as a semantic resource

    Get PDF
    The characteristic holistic features of the quantum theoretic formalism and the intriguing notion of entanglement can be applied to a field that is far from microphysics: logical semantics. Quantum computational logics are new forms of quantum logic that have been suggested by the theory of quantum logical gates in quantum computation. In the standard semantics of these logics, sentences denote quantum information quantities: systems of qubits (quregisters) or, more generally, mixtures of quregisters (qumixes), while logical connectives are interpreted as special quantum logical gates (which have a characteristic reversible and dynamic behavior). In this framework, states of knowledge may be entangled, in such a way that our information about the whole determines our information about the parts; and the procedure cannot be, generally, inverted. In spite of its appealing properties, the standard version of the quantum computational semantics is strongly "Hilbert-space dependent". This certainly represents a shortcoming for all applications, where real and complex numbers do not generally play any significant role (as happens, for instance, in the case of natural and of artistic languages). We propose an abstract version of quantum computational semantics, where abstract qumixes, quregisters and registers are identified with some special objects (not necessarily living in a Hilbert space), while gates are reversible functions that transform qumixes into qumixes. In this framework, one can give an abstract definition of the notions of superposition and of entangled pieces of information, quite independently of any numerical values. We investigate three different forms of abstract holistic quantum computational logic

    Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination

    Get PDF
    The food and drink manufacturing industry is constantly seeking for alternative sanitation and disinfection systems that may achieve the same antimicrobial efficiency of conventional chemical sanitisers and at the same time be convenient in terms of energy and water savings. A candidate technology for this purpose is the use of light in combination with photosensitisers (PS) to generate a bioactive effect against microbial agents in a process defined as photodynamic inactivation (PDI). This technology can be applied to the food processing of different food matrices to reduce the microbial load of foodborne pathogens such as bacteria, fungi, viruses and protozoa. Also, the PDI can be exploited to increase the shelf-life period of food by inactivation of spoiling microbes. This review analyses new developments in the last five years for PDI systems applied to the food decontamination from foodborne pathogens. The photosensitisation mechanisms and methods are reported to introduce the applied technology against microbial targets in food matrices. Recent blue light emitting diodes (LED) lamp systems for the PDI mediated by endogenous PS are discussed as well PDI technologies with the use of exogenous PS from plant sources such as curcumin and porphyrin-based molecules. The updated overview of the most recent developments in the PDI technology both in wavelengths and employed PS will provide further points of analysis for the advancement of the research on new competitive and effective disinfection systems in the food industry

    Intuitionistic logic as a connexive logic

    Get PDF
    We show that intuitionistic logic is deductively equivalent to Connexive Heyting Logic (CHL), hereby introduced as an example of a strongly connexive logic with an intuitive semantics. We use the reverse algebraisation paradigm: CHL is presented as the assertional logic of a point regular variety (whose structure theory is examined in detail) that turns out to be term equivalent to the variety of Heyting algebras. We provide Hilbert-style and Gentzen-style proof systems for CHL ; moreover, we suggest a possible computational interpretation of its connexive conditional, and we revisit Kapsner’s idea of superconnexivity

    Evaluation of the energy utilization index in sheep milk cooling systems

    Get PDF
    The energy consumption of sheep milk cooling systems (MCSs) was quantified in this study to provide original information filling a literature gap on the impact of sheep milk cooling on the energy and economic balance in dairy farms. Performance and energy monitoring tests were conducted simultaneously on 22 MCSs in Sardinia (Italy). The results determined the cooling time as a function of the performance class and number of milkings. The Energy Utilization Index (EUI) was applied to measure the energy required to cool down the milk and estimate the incidence on its price. The average EUI was 1.76 kWh 100 L−1 for two-milkings and 2.43 kWh 100 L−1 for four-milkings MCSs, whereas the CO2 emissions ranged from 998 to 1378 g CO2 100 L−1 for two- and four-milkings MCSs, respectively. The estimated energy consumption for the storage of refrigerated sheep milk was 0.12 kWh 100 L−1. The malfunctioning MCSs averagely consumed 31% more energy than regular systems. The energy cost for cooling accounted for 0.61% on the current sheep milk price in Italy. Based on the analysis, the reported EUI values can be used as a preliminary indicator of the regular operation of MCSs

    Night-time shift work and related stress responses: A study on security guards

    Get PDF
    Work-related stress can induce a break in homeostasis by placing demands on the body that are met by the activation of two different systems, the hypothalamic\u2013pituitary\u2013adrenal axis and the sympathetic nervous system. Night-shift work alters the body\u2019s exposure to the natural light\u2013 dark schedule and disrupts circadian (daily) rhythms. The greatest effect of night-shift work is the disruption of circadian rhythms. The impact that these disruptions may have on the pathogenesis of many diseases, including cancer, is unknown. This study aims to discover the relationship among three different job activities of security guards and their stress-related responses by evaluating salivary cortisol levels and blood pressure. Methods: Ninety security guards, including night-time workers and night-time and daily-shift workers, were recruited for this study. Each security guard provided two saliva samples before and after three scheduled time points: (i) at 22:00, (ii) at 06:30, and (iii) at 14:00. Results: The results of the study showed a significant alteration in cortisol levels. Night-time shift cortisol levels significantly increased before and after the work shifts. A physiological prevalence of the vagal tone on the cardiocirculatory activity was found during night-shift work. Conclusions: This study indicates that cortisol levels and blood pressure are sensitive markers of biological responses to severe work stress. Shift-change consequences may occur at the end of the night shift when there is a significant increase in the cortisol level and a significant variation in cardiovascular parameters

    Logiche sottostrutturali

    Get PDF
    Questo lavoro è un invito allo studio delle logiche sottostrutturali, una famiglia di logiche che generalizzano la logica classica. In primo luogo, discuteremo la formulazione della logica classica à la Gentzen, per poi vedere, passo dopo passo, quali siano le motivazioni che possono spingere a considerare le sue generalizzazioni sottostruttural

    Transport across thin membranes: Effective solute flux jump

    Get PDF
    A model to describe the transport across membranes of chemical species dissolved in an incompressible flow is developed via homogenization. The asymptotic matching between the microscopic and macroscopic solute concentration fields leads to a solute flux jump across the membrane, quantified through the solution of diffusion problems at the microscale. The predictive model, written in a closed form, covers a wide range of membrane behaviors, in the limit of negligible Reynolds and Péclet numbers inside the membrane. The closure problem at the microscale, found via homogenization, allows one to link the membrane microstructure to its effective macroscopic properties, such as solvent permeability and solute diffusivity. After a validation of the model through comparison with the corresponding full-scale solution, an immediate application is provided, where the membrane behavior is a priori predicted through an analysis of its microscopic properties. The introduced tools and considerations may find applications in the design of thin microstructured membranes

    Introduction: Logical Pluralism and Translation

    Get PDF
    • …
    corecore